The minimum area of convex curves for given diameter and perimeter
نویسندگان
چکیده
منابع مشابه
Diameter Two Graphs of Minimum Order with Given Degree Set
The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...
متن کاملMaximal perimeter, diameter and area of equilateral unit-width convex polygons
The paper answers the three distinct questions of maximizing the perimeter, diameter and area of equilateral unit-width convex polygons. The solution to each of these problems is trivially unbounded when the number of sides is even. We show that when this number is odd, the optimal solution to these three problems is identical, and arbitrarily close to a trapezoid. The paper also considers the ...
متن کاملArea and Perimeter of the Convex Hull of Stochastic Points
Given a set P of n points in the plane, we study the computation of the probability distribution function of both the area and perimeter of the convex hull of a random subset S of P . The random subset S is formed by drawing each point p of P independently with a given rational probability πp. For both measures of the convex hull, we show that it is #P-hard to compute the probability that the m...
متن کاملdiameter two graphs of minimum order with given degree set
the degree set of a graph is the set of its degrees. kapoor et al. [degree sets for graphs, fund. math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. furthermore, the minimum order of such a graph is determined. a graph is 2-self- centered if its radius and diameter are two. in this paper for ...
متن کاملConvex lattice polygons of fixed area with perimeter-dependent weights.
We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1954
ISSN: 0386-2194
DOI: 10.3792/pja/1195525912